Esitlus üles laadida
Esitlus laaditakse üles. Palun oodake
1
Üks- ja hulkliikmed © T. Lepikult,
2
Matemaatiline avaldis
Matemaatiliseks ehk analüütiliseks avaldiseks nimetatakse eeskirja, mis määrab teatava skalaarse suuruse (ehk avaldise väärtuse) leidmiseks konstantide ja muutujatega sooritatavad tehted ning nende sooritamise järjekorra. Näited 1) on matemaatiline avaldis, mille väärtus on 27. 2) on matemaatiline avaldis, mille väärtuse leidmiseks tuleb esmalt leida muutuja r väärtuse ruut ja seejärel korrutada tulemust arvuga p = 3,14... 3) - selle matemaatilise avaldise väärtuse leidmiseks tuleb 1) leida siinus nurgast, mille suurus radiaanides on x; 2) leida muutuja x väärtuse ruut ja korrutada see viiega jne. 4) 32 - lihtsaimaks matemaatiliseks avaldiseks on konstant (arv). algusesse eelmine slaid järgmine slaid esitluse lõpp
3
Algebraline avaldis Matemaatilist avaldist, milles on vaid lõplik arv kordi kasutatud aritmeetikatehteid ning astendamist ja/või juurimist, kus astendajad ja juurijad on täisarvud, nimetatakse algebraliseks avaldiseks. Näiteks : algebralised avaldised on: 1) 2) 3) Algebralised avaldised ei ole: 1) (avaldis sisaldab trigonomeetrilisi funktsioone); 2) (avaldises esineb astendamine irratsionaalarvuga). algusesse eelmine slaid järgmine slaid esitluse lõpp
4
Ratsionaalne ja irratsionaalne avaldis
Niisugust algebralist avaldist, kus ei esine juurimist, nimetatakse ratsionaalseks avaldiseks, vastasel juhul irratsionaalseks avaldiseks. Näited ratsionaalne avaldis: irratsionaalne avaldis: irratsionaalne avaldis: algusesse eelmine slaid järgmine slaid esitluse lõpp
5
Üksliikmed (e. monoomid)
Arvulise teguri ja ühe või mitme tähelise sümboli naturaalarvulise astendajaga astme korrutist nimetatakse üksliikmeks e. monoomiks. 5; 1 x; Näited üksliikmed: ei ole üksliikmed: Üksliikmes esinevat arvulist tegurit nimetatakse üksliikme kordajaks. Üksliikme kordaja märki (+ või -) nimetatakse üksliikme märgiks (märgi “+” võib ka kirjutamata jätta). Näide Üksliikme 2x2 märk on “+”, üksliikme –y märk aga “-”. + Kaht üksliiget nimetatakse sarnasteks, kui nad üksteisest üldse ei erine või erinevad üksnes kordajate poolest. Näiteks 2ab2; -1,5ab2 ja ab2 on sarnased üksliikmed. algusesse eelmine slaid järgmine slaid esitluse lõpp
6
Üksliikmete liitmine ja lahutamine
Üksliikmete liitmisel tuleb liidetavad üksliikmed kirjutada üksteise järele koos märkidega (+ või -), mis neil on. Näide Üksliikmete 2,3a2, -bc3 ja summa on Üksliikmete lahutamisel üksliikmest tuleb lahutatavad üksliikmed kirjutada vähendatava järele vastandmärkidega. Näide Üksliikmete –3,7x, 5x3 ja - x2 lahutamisel üksliikmest 6 saame avaldise Üksliikmete liitmisel ja lahutamisel saadud avaldisi nimetatakse algebralisteks summadeks. Üksliikmete algebralises summas võib muuta liidetavate järjekorda. algusesse eelmine slaid järgmine slaid esitluse lõpp
7
Üksliikmete algebralise summa koondamine
Üksliikmete algebralise summa koondamine. Üksliikmete korrutamine ja jagamine Kui üksliikmete algebralises summas esineb sarnaseid liikmeid, siis need koondatakse, s. t. asendatakse kõik sarnased liikmed üheainsa liikmega, mille kordaja võrdub asendatavate liikmete kordajate summaga. Näited Üksliikmete korrutamisel kordajad korrutatakse ja ühesuguste täheliste tegurite astendajad liidetakse. Näide Üksliikmete jagamisel kordajad jagatakse ja ühesuguste täheliste tegurite astendajad lahutatakse. Näide algusesse eelmine slaid järgmine slaid esitluse lõpp
8
Hulkliikmed ja nende liitmine-lahutamine
Hulkliikmena mõistetakse üksliikmete algebralist summat. Selles summas esinevaid üksliikmeid nimetatakse hulkliikme liikmeteks. Hulkliikmete liitmisel tuleb liidetavate hulkliikmete kõik liikmed kirjutada üksteise järele koos nende märkidega ja sarnased liikmed koondada. Näide Hulkliikmete lahutamisel tuleb vähendatava järele kirjutada vähendaja hulkliikme kõik liikmed vastandmärkidega ning sarnased liikmed koondada. Näide algusesse eelmine slaid järgmine slaid esitluse lõpp
9
Hulkliikmete korrutamine.
Hulkliikme korrutamisel üksliikmega tuleb hulkliikme iga liige korrutada selle üksliikmega. Näide + Kahe hulkliikme korrutamisel tuleb üks hulkliige korrutada teise hulkliikme iga liikmega ning sarnased liikmed koondada.. Näide algusesse eelmine slaid järgmine slaid esitluse lõpp
10
Arvutamise abivalemid.
1. 2. 3. 4. 5. 6. 7. algusesse eelmine slaid järgmine slaid esitluse lõpp
11
Ruutkolmliikme lahutamine tegureiks.
Kui võrrand on lahenduv (lahendid x1 ja x2), siis vastav ruutkolmliige lahutub lineaartegurite korrutiseks: Näide Et ruutvõrrandi lahendid on 1/3 ja –3, siis algusesse eelmine slaid esitluse lõpp
Seotud esitlused
© 2024 SlidePlayer.ee Inc.
All rights reserved.